An Introduction to Fatigue Testing Equipment, Test Setup & Data Collection

Lisa Goodwin
Servohydraulic Sales Specialist & Market Manager - Instron
Themes..

• Certainty of Measurement
• Repeatability of Measurement
• Safety & Legislation
• Usability & User Experience
Things to cover...

• Fatigue Testing Basics:
 • Why Servo-Hydraulic?
 • The key components of a servo-hydraulic system.
 • The working principle behind an actuator.
 • Factors which effect performance.
 • Sensors and control.
 • User Interfaces.

• Test Setup & Data Collection:
 • Grips and fixtures for fatigue.
 • Data collection and processing.
 • Advancements.
 • Alternatives to Servo-Hydraulics for fatigue
Servohydraulic System Setup

- Actuator & LVDT
- Manifold + Servo-Valve
- User Interface
 - PC/Software
- Load Frame
- Load Cell
- Test Area
- Hydraulic Power Unit (HPU)
- Flexible Hoses
- Controller

The difference is measurable®
Why Servohydraulic (SH)?

• Low compressibility allow for a stiff and dynamic actuator system.
• Very smooth and efficient for linear movement.
• Provide a ‘compact’ way of achieving high forces.
• Versatile performance just by configuring the system components.
• Reliable test machines which can be in use for 30 years or more!
• Good for Fatigue testing, particularly metals, where we want to test many cycles usually at high frequency.
Standard SH System

HYDRAULICS AND PERFORMANCE

Hydraulic Power Unit -> Hydraulic Hoses -> Manifold -> Servo-Valve -> Actuator

APPLICATION SOFTWARE

Instron Software <-> Set Point Command <-> Sensor Data

SENSORS AND CONTROL

8800 Controller
- Force
- Position
- Loadcell
- LVDT

The difference is measurable®
Hydraulic Power Supply

• Responsible for providing High pressure (207 bar) oil for the test system
• Characterised mainly by the flow of oil they can provide in litres/ min.
• Pressurised fluid energy generates heat – requires cooling
• Power Consumption – 3 phase

• Notes:
 • Cooling - Air or Water
 • Acoustic Attenuation
 • Pressure Accumulation
 • Flexible Hoses
 • Filtration & Oil Maintenance
Actuator, Servo-valve & Manifold

The difference is measurable®
Hydraulic Actuators

- A simple piston with two chambers.
- Actuator movement is caused when the oil pressure in the two chambers is not equal.
- Controlling the flow/pressure of oil in each chamber controls the actuator movement.
Bearing Types

Labyrinth or ‘Plain’

• Standard for many suppliers
• Mechanical Movement draws lubrication in
• Can be damaged by sideloads!

Hydrostatic

• Uses 4 ‘pads’ of hydraulic oil keep the piston rod central and lubricated inside the bearing.
• Increases in sideload result in increased resistance from pressure pads.
• Less friction in the bearing
Hydraulic Manifold

• A hydraulic ‘circuit’ machined from a single block.

• Allows hydraulic components to be attached easily. Most commonly, SVs, Accumulators and Hoses.

• Simplifies build process.
• Reduces build time.
• Gives predictable performance.
Servo-Valves

• Control the quantity and direction of fluid flow into the actuator.
• Controlled by a small electrical voltage generated by controller.
• Characterised by the amount of oil that can flow through them.

‘Big’ (high flow) SVs: Good for high frequency / large amplitude
‘Small’ (low flow) SVs: Better resolution for small amplitudes

• 5 l/min
• 10 l/min
• 20 l/min
• 40 l/min
• 65 l/min

• Dual Servo-Valves!
Hydraulic Actuator Operation

- Manifold
- Piston Rod
- Piston
- Piston Seal
- “Servo-Valve”
- Effective Area
- Bearing Assemblies

Pressurized fluid enters the system through the "Servo-Valve" and is directed to either the piston or the return path. The effective area of the piston determines the force generated.
Achieving Higher Forces & Performance?

Force = Pressure × Area

• In our systems we assume the pressure of the oil is constant, normally 207Bar

• If we want to achieve higher forces then we have to increase the ‘effective area’ of the actuator.

• Increasing the piston area means we need more oil flow to maintain the same performance.
Oil Flow, Pressure & Performance

HYDRAULICS AND PERFORMANCE

- To move the actuator quickly, we need more oil flow
 - Oil flow is measured in litres/min e.g. 48l/min HPU
 - Flow can be limited by HPU, hoses, manifold or SV.

- Pressure is measured in Bar/Psi e.g. 207Bar/3000psi HPU
 - We ‘assume’ pressure is constant. We said that we need more piston area to achieve higher forces.
 - When a lot of oil is flowing, pressure drops can occur between the HPU and the actuator.

- Predicting Performance
 - There is a trade off between frequency, amplitude and force!
 - Performance Plot!
Sensors & Control

- Position
- Force
- Strain
- Compliance
- Strain

- LVDT
- Loadcell
- Extensometer
- COD Gauge
- Strain Gauges

System Supply
Application Specific – Analog 0-10V

The difference is measurable®
Sensors & Control

Digital Control System
- Expandable or fixed architecture
- Safety circuits

Signal Conditioning
- Automatic Transducer recognition & calibration
- Transducer signal conditioning

Waveform Generation

Data Acquisition
- 5/10kHz

Control System
- Closed loop control
- Advanced control techniques
- 5/10kHz loop closure and update

![Diagram of control system](image)
Load Frames

Load Reaction Frame

- Frame designs based on their dynamic load rating
- Frame stiffness is important!
- Actuator position is configurable (base or crosshead)

- **Handset** for test setup and specimen installation
 - Hydraulic crosshead lift – adjust Test space
 - Actuator jog
 - Emergency stop button
Principle of Operation

Hydraulic Pump

Test Frame
Principle of Operation

Hydraulic Pump

Test Frame
Principle of Operation

Hydraulic Pump

Servo Valve & Manifold

Hydraulic Actuator
Principle of Operation

Hydraulic Pump

Servo Valve

Hydraulic Actuator

Control Unit, closed loop control

LVDT feedback

The difference is measurable®
Principle of Operation

Hydraulic Pump

Loadcell feedback

Servo Valve

Control Unit, closed loop control
Principle of Operation

Extensometer feedback

Hydraulic Pump

Servo Valve

Control Unit, closed loop control

The difference is measurable®
User Interface - Software

• System Setup Software
 • Sensor Calibration
 • Loop Tuning
 • Sensor Limits

• Live Sensor Feedback

<table>
<thead>
<tr>
<th>File</th>
<th>Live Displays</th>
<th>mm</th>
<th>0.000</th>
<th>mm</th>
<th>0.033</th>
<th>mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>E1000:Position:Track</td>
<td>E1000:Load:Track</td>
<td>kN</td>
<td>0.000</td>
<td>mm</td>
<td>0.000</td>
<td>mm</td>
</tr>
<tr>
<td>E1000:Position:Track</td>
<td>E1000:Digital Position:Track</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Application Software

• Application Specific Software
 • General Purpose Static & Fatigue
 • Fracture Mechanics – da/dN, JIC, KIC, R-Curve, CTOD
 • LCF, TMF etc

• Waveform Generation, Test Control & Monitoring

• Stress-Life or Strain-Life Data

Crack Growth & Fracture Toughness
Servohydraulic System Setup
Test Setup & Data Collection
Grips & Fixtures for Fatigue

- Standard attachments sized for actuator capacity
- Pre-load for reverse stress testing

High Cycle Fatigue (HCF) Low Cycle Fatigue (LCF)

Alignment Fixture

1000°C Split Furnace

Reverse Stress Pullrods

1000°C Extensometer
Grips & Fixtures for Fatigue

- Fracture Mechanics

SENB Bend Specimen Setup

CT Specimen Setup
<table>
<thead>
<tr>
<th></th>
<th>Test Setup & Run Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Install Appropriate Grips/Fixtures</td>
</tr>
<tr>
<td></td>
<td>- Pre-load (reverse stress)</td>
</tr>
<tr>
<td></td>
<td>- Alignment checks</td>
</tr>
<tr>
<td>2</td>
<td>Calibrate & Balance Sensors - Load & Strain</td>
</tr>
<tr>
<td>3</td>
<td>Install Specimen</td>
</tr>
<tr>
<td>4</td>
<td>Loop Tuning - PID</td>
</tr>
<tr>
<td></td>
<td>- All channels used in the test</td>
</tr>
<tr>
<td>5</td>
<td>Set Test Limits</td>
</tr>
<tr>
<td></td>
<td>- Protect travel of sensors</td>
</tr>
<tr>
<td></td>
<td>- Appropriate for test conditions</td>
</tr>
<tr>
<td>6</td>
<td>Program Test Method</td>
</tr>
<tr>
<td>7</td>
<td>RUN TEST</td>
</tr>
</tbody>
</table>
Live Test Monitoring

- Live graph editing – freedom to edit at any time
- Progress indicators – instant status feedback
Intelligent Data Processing

Raw Data

Enable

Data Processing

Vector of data
Position
Load
Strain
Cycle count

The difference is measurable®
Intelligent Data Processing

Raw Data

Enable

Data Processing

Trend
Track
Peaks

Discarded Vectors

Vector of data
Position
Load
Strain
Cycle count

The difference is measurable®
Calculating Additional Test Data

• Additional Calculated ‘channels’

DMA calculations provide multiple outputs, including:

- Loss Angle
- Tan Delta
- E* (Complex Modulus)
- E’ (Storage Modulus)
- E” (Loss Modulus)
- Energy
- Energy Loss
- K* (Dynamic Stiffness)
- K’ (Elastic Stiffness)
- K” (Damping Stiffness)

Material Properties
- Young’s Modulus
- Static Elastic and Plastic Strain
- Elastic Stiffness

Test Parameters
- Velocity
- Acceleration
- Energy Calculations
- Frame Compliance

Data Interpolation/Extrapolation
- Pre-set Point Measurements ‘Point X at Y’
- Contact Point Determination
Advanced Control Modes

- Run tests not previously possible.
- Use calculated channels as control targets
Alternatives to SH Actuator Drive Systems

- **Pneumatic Actuators**
 - Air is very compliant/compressible
 - Limited to static or low force, slow cyclic

- **Resonance systems**
 - Sinusoidal waveforms only
 - Short Stroke
 - Fixed Frequency – capable of high frequency
 - Essentially open loop control

- **Preloaded Ballscrew Actuator**
 - High precision low speed static, slow cyclic

- **Direct Drive Linear Electric Motors**
 - Long stroke
 - Closed loop control
 - Cyclic testing
 - No oil!
Linear Electric Motor Fatigue System

Actuator & LVDT

Load Frame

Load Cell

Test Area

User Interface
 PC / Software

Power Amplifier

Controller

Load Cell

Acoustically Engineered Air Cooling

Test Area

10 kN ElectroPuls E10000

User Interface

Single-Phase Mains Power

Power Amplifier

Low Energy

Controller

Small Footprint

Controller

PC

Power Amplifier

Load Cell

Test Area

The difference is measurable®
Drive System Comparisons

<table>
<thead>
<tr>
<th>Drive</th>
<th>Applications</th>
<th>Pros</th>
<th>Cons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Servo hydraulic</td>
<td>HCF</td>
<td>Highly configurable</td>
<td>High Energy consumption</td>
</tr>
<tr>
<td></td>
<td>Static</td>
<td>Tried & tested</td>
<td>Maintenance costs</td>
</tr>
<tr>
<td></td>
<td>LCF & TMF Fracture</td>
<td>Long life</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5kN to +10MN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pneumatic</td>
<td>Low Force</td>
<td>Low cost</td>
<td>Air is compliant/compressible</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Clean & quiet</td>
<td>Control challenges</td>
</tr>
<tr>
<td>Resonance Drive</td>
<td>HCF</td>
<td>Low Energy consumption</td>
<td>Short stroke</td>
</tr>
<tr>
<td></td>
<td>Fracture Sinusoidal a</td>
<td>Very high frequency</td>
<td>Fixed frequency</td>
</tr>
<tr>
<td></td>
<td>only</td>
<td></td>
<td>Low accuracy</td>
</tr>
<tr>
<td></td>
<td><1MN</td>
<td></td>
<td>Sine waveforms only</td>
</tr>
<tr>
<td>Direct Drive</td>
<td>LCF</td>
<td>High Precision</td>
<td>Limited to slow speed tests only</td>
</tr>
<tr>
<td>Servo Electric Ball</td>
<td>TMF</td>
<td>Slow Speed Control</td>
<td></td>
</tr>
<tr>
<td>Screw</td>
<td>Static</td>
<td>Low Energy Consumption</td>
<td></td>
</tr>
<tr>
<td></td>
<td><250kN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Direct Drive</td>
<td>HCF</td>
<td>No Oil</td>
<td>Low force</td>
</tr>
<tr>
<td>Linear Electric Motors</td>
<td>Static</td>
<td>Low maintenance</td>
<td>Control challenges</td>
</tr>
<tr>
<td></td>
<td>Fracture</td>
<td>Quiet</td>
<td></td>
</tr>
<tr>
<td></td>
<td><15kN</td>
<td>Easily relocated</td>
<td></td>
</tr>
</tbody>
</table>

The difference is measurable®
Wrap Up..

• Fatigue Testing Basics:
 • Why Servo-Hydraulic?
 • The key components of a servo-hydraulic system.
 • The working principle behind an actuator.
 • Factors which effect performance.
 • Sensors and control.
 • User Interfaces.

• Test Setup & Data Collection:
 • Grips and fixtures for fatigue.
 • Data collection and processing.
 • Advancements.
 • Alternatives to Servo-Hydraulics for fatigue
Questions?