Fatigue Simulation of Welds Using the Total-Life Method

Dr Andrew Halfpenny

Director of Technology
Challenge/project scope

- Weld fatigue properties much lower than parent plate due to:
 - **Weld geometry:**
 - Large stress concentrations factors
 - Existing crack initiation sites
 - **High tensile residual stresses**
 - **Non-uniform material distribution**
 - Deposited weld metal
 - Heat-affected zone in parent metal
 - **Parent metal strength not reflected in weld fatigue strength**
 - **Weld fatigue behavior is primarily crack growth**
Challenge/project scope

1. Crack Growth

2. Local Notch Stress

3. Structural Stress

\[\sigma_{\text{peak}} = K_t \sigma_{hs} \]

Online webinar, October 16, 2018:
“Fatigue of Welds using nCode DesignLife”

www.hbmprenscia.com
Challenge/project scope

- Improve accuracy of weld fatigue life simulation
- Account for ‘designed’ welds – lightweight & thick-weld vehicle structures e.g. stress relieving, weld dressing, etc.
- Recognise fatigue as initiation and crack growth

Prof. G. Glinka, University of Waterloo, Canada
1. Fatigue/Fracture Theory

2. CAE Application

3. Case study

4. Conclusions

Calculated elliptical crack front “to scale” overlaid on fracture surface (P =12.1kN, R=0.1, n=7,000,000 cycles, a=10mm and b=39mm)
Progressive crack growth: sequence of successive initiation failures

- High stress at crack-tip causes slip planes and progressive weakening of the grain
- Stress intensity increases as the crack grows so failure of each grain occurs more quickly
- Effective radius of crack tip $\rho^* \approx$ grain size
Crack Growth Model $\frac{da}{dN}$

- Crack growth rate $\frac{da}{dN}$ is a function of the ‘crack-tip driving force’ $\Delta \kappa$

$$\frac{da}{dN} = C \Delta \kappa^m$$

- $\Delta \kappa$ is a function of the ‘stress intensity’ and R ratio (after Walker)

$$\Delta \kappa = K_{max}^p (K_{max} - K_{min})^{1-p}$$

- K is a function of stress σ, geometry Y, crack length a, and the residual stress field at the tip of the crack K_r

$$K = \sigma C_f Y \sqrt{\pi a} + K_r$$

- C_f is the ‘small crack correction’

$$C_f = \left(1 + \frac{1}{2} \sqrt{\frac{\rho^*}{a}}\right)$$
Crack Growth Model $\frac{da}{dN}$

- Crack growth rate $\frac{da}{dN}$ is a function of the ‘crack-tip driving force’ $\Delta \kappa$

 \[\frac{da}{dN} = C \Delta \kappa^m \]

- $\Delta \kappa$ is a function of the stress intensity and R ratio

 \[\Delta \kappa = K_m d_m^{p} \frac{K_m - K_m}{1 - p} \]

- K is a function of stress σ, geometry Y, crack length d, and the residual stress field at the tip of the crack

 \[K = \sigma C_f Y \pi d + K_r \]

- C_f is the ‘small crack correction’

 \[C_f = \left(1 + \frac{1}{2} \sqrt{\frac{R}{a}} \right) \]

- Crack closure model:

 \[\sigma_{min} = \begin{cases} \sigma_{min} & \text{if } \sigma_{min} \geq 0 \\ K_t \sigma_{min} & \text{if } \sigma_{min} < 0 \end{cases} \]

 where K_t is the notch correction, typically of the range

 \[2 \leq K_t \leq 3 \]
Universal Weight Function (UWF) Solutions

\[K = \sigma C_f Y \sqrt{\pi a} + K_r \]

\(Y = f(\text{geometry, stress profile}) \)

- Transforms nominal stress into Stress Intensity (SI) at the crack tip
- UWF applies stress profile explicitly of the geometry (i.e. use a single geometry for any number of stress distributions)
- UWF can deal with complex stress distributions such as residual stress fields and crack-tip wake stresses
Cyclic Crack-tip Plasticity Model K_r

Crack-tip opening

\[K_0 K_1 \]

\[\sigma_{ys} \]

\[\rho \]

\[x \]

Theoretical elastic stress

Multiaxial crack-tip stress profile based on Creager-Paris law for blunt cracks:

\[s_x(r, \theta) = \frac{K}{\sqrt{2\pi r}} \left[\cos \left(\frac{\theta}{2} \right) \left(1 - \sin \left(\frac{\theta}{2} \right) \sin \left(\frac{3\theta}{2} \right) \right) - \frac{\rho^*}{2r} \cos \left(\frac{3\theta}{2} \right) \right] \]

\[s_y(r, \theta) = \frac{K}{\sqrt{2\pi r}} \left[\cos \left(\frac{\theta}{2} \right) \left(1 + \sin \left(\frac{\theta}{2} \right) \sin \left(\frac{3\theta}{2} \right) \right) + \frac{\rho^*}{2r} \cos \left(\frac{3\theta}{2} \right) \right] \]

\[v(r, \theta) = \frac{K}{\sqrt{2\pi r}} \left[\sin \left(\frac{\theta}{2} \right) \cos \left(\frac{\theta}{2} \right) \sin \left(\frac{3\theta}{2} \right) - \frac{\rho^*}{2r} \sin \left(\frac{3\theta}{2} \right) \right] \]
Cyclic Crack-tip Plasticity Model K_r

Crack-tip opening

$$\overrightarrow{K_0K_1}$$

Crack-tip closing

$$\overrightarrow{K_1K_2}$$

Crack-tip plasticity is based on multiaxial Neuber-Ramberg-Osgood cyclic plasticity model with plastic redistribution:

$$\frac{s_0^2}{E} = \frac{\sigma_1^2}{E} + \sigma_1 \left(\frac{1}{K^1}\right)^\frac{1}{m}$$

$$\frac{\Delta s^2}{E} = \frac{\Delta \sigma^2}{E} + 2\Delta \sigma \left(\frac{\Delta \sigma}{2K^1}\right)^\frac{1}{m}$$
Cyclic Crack-tip Plasticity Model K_r

Crack-tip opening

\[\overrightarrow{K_0K_1} \]

Crack-tip closing

\[\overrightarrow{K_1K_2} \]

Crack-tip plasticity is based on multiaxial Neuber-Ramberg-Osgood cyclic plasticity model with plastic redistribution:
Cyclic Crack-tip Plasticity Model K_r - Crack retardation

Stress intensity arising from compressive wake determined using Glinka’s Stress Weight Function:

$$K_r = \int_{r_1}^{r_2} \frac{2\sigma_r(r)}{\sqrt{2\pi(a-r)}} \, dr$$

This retards the crack growth:

$$K = \sigma C_f Y \sqrt{\pi a} + K_r$$
Cyclic Crack-tip Plasticity Model K_r - Crack retardation

Current Overload Cycle

Compressive wake from constant-amplitude loading

Compressive wake from variable-amplitude loading

© 2018 HBM
HBM Prenscia: Public
Cyclic Crack-tip Plasticity Model K_r - Memory rules

Rule 1:
- Residual compression from cycle exceeds previous overload
 ∴ Start new overload

Rule 2:
- Residual compression from cycle is less than previous overload
 ∴ Keep previous overload

Rule 3:
- Residual compression from cycle exceeds previous overload
 ∴ Start new overload

Rule 4:
- Residual compression from cycle is approximately the same as the previous overload
 ∴ Extend overload zone
1. Fatigue/Fracture Theory

2. CAE Application

3. Case study

4. Conclusions

Calculated elliptical crack front “to scale” overlaid on fracture surface (P =12.1kN, R=0.1, n=7,000,000 cycles, a=10mm and b=39mm)
Inputs to a WholeLife Weld Calculation

- Applied structural stress histories
- Through-thickness Kt profiles
- Residual Stress profile

- Membrane
- Bending

Weld Toe Residual Stress Distribution

© 2018 HBM

HBM Prenscia: Public
Stresses Calculated Directly by the Finite Element Model

Smax = 133
Max = 132.6
At Node 1591
Min = -25.04
At Node 1242

Smax = 142
Max = 141.8
At Node 5232
Min = -35.2
At Node 4899

Smax = 170
Max = 169.9
At Node 446
Min = -62.35
At Node 246

Smax = 252
Max = 261.5
At Node 584
Min = -77.56
At Node 2603
Structural Stresses in Solid FE Models from Trough Thickness Integration

\[\sigma_m = \frac{1}{t} \int_0^t \sigma \, dx \]

\[\sigma_b = \frac{6}{t^2} \int_0^t \sigma \left[\frac{t}{2} - x \right] \, dx \]

The linearized stress is a 2D tensor, \(S_{tt}, S_{ee}, S_{et} \)
Structural Stress from Through Thickness Integration

Smax = 117

Smax = 109

Smax = 115
Kt Profiles

- Kt Stress profiles and Weight functions are used to calculate stress intensity factors
- Built-in empirical fillet weld geometry
- User input dimensions

New for 2019:

- Can be applied to shell elements as well as solids making it compatible with all standard seam weld capabilities
- New sub-modelling feature to calculate Kt profiles
Submodel Used for Kt Profiles Calculation

- Coarse model can be used for actual WholeLife calculation, but a refined model is required to obtain Kt and/or stress profile
- Here a refined submodel has been employed for that purpose
Two Stress States on Detailed Submodel

Load case 1: predominantly membrane

Load case 2: predominantly bending
Breakout model

- Calculate detailed stresses σ_1 and σ_2
- Calculate structural stresses s_1 and s_2
- Calculate unit Transformation matrix separating membrane and bending components

$$[T] = \begin{bmatrix} s_{1a} & s_{2a} \\ s_{1b} & s_{2b} \end{bmatrix}^{-1} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

- Apply Transform to calculate K_t for membrane and bending

$$\begin{bmatrix} K_{t\text{,mem}} \\ K_{t\text{,bend}} \end{bmatrix} = [T]^T \begin{bmatrix} \sigma_1 \\ \sigma_2 \end{bmatrix}$$
WholeLife Material Data

Ramberg-Osgood from EN analysis

LEFM crack growth properties at several R ratios

Cyclic Stress vs. Strain Curve

- Excluded points
- Elastic points
- Plastic points

Graph showing da/dN vs. Δκ with a slope of 0.000177828.
1. Fatigue/Fracture Theory

2. CAE Application

3. Case study

4. Conclusions

Calculated elliptical crack front “to scale” overlaid on fracture surface (P =12.1kN, R=0.1, n=7,000,000 cycles, a=10mm and b=39mm)
Description of SAE FD&E Committee Total Life Project

SAE Fatigue Design & Evaluation (FD&E) Committee

TOTAL LIFE FATIGUE PROJECT

www.fatigue.org/projects/total-life-project
SAE Case Study – *specimen loading*

Constant amplitude
- 24kN, $R = 0.3$
- 24kN, $R = 0.1$
- 18kN, $R = 0.1$
- 10.8 kN, $R = -1$

Block load
- 24kN, variable-amplitude, block-load

Random
- 24kN, variable amplitude, time history file
SAE Case Study – *DesignLife analysis*
Correlation with Test – Comparison with Standard Solid Seam Weld Analysis

WholeLife Results

- WholeLife
- Seam Weld
- exact
- +2
- -2

Test Life (cycles)

WholeLife Life (cycles)
Summary

Challenge

- Improve accuracy of weld fatigue life simulation
- Account for ‘designed’ welds as used in lightweight & thick-weld vehicle structures e.g. stress relieving, weld dressing, etc.
- Recognize fatigue as initiation and crack growth

Prof. G. Glinka, University of Waterloo, Canada

Solution - WholeLife

- Accommodates complex weld geometries, residual stresses & multiaxial loading
- Uses standard FE mesh models – *shells & solids*
- Easy-to-use sub-modelling feature
- Uses fracture mechanics with advanced crack-tip cyclic plasticity modeling – *insensitive to initial crack length*
- Uses structural stress weld methods to locate critical failure sites

Results

- Method showed outstanding correlation with independent SAE tests – “total-life” method
nCode ‘WholeLife’

www.hbmprenscia.com

Dr Andrew Halfpenny

Director of Technology – nCode Products

T: +44 (0)7968 288760

E: andrew.halfpenny@hbmprenscia.com